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Analytical Solution of an Irreversible Surface 
Reaction Model 

E. Clement,  1 P. Leroux-Hugon,  2 and L. M. Sander 2'3 

In this work, we consider a simple model of reaction-limited annihilation 
A + B ~ 0 with a random source and desorption in the spirit of the reaction 
model proposed by Fitchthorn, Ziff, and Gulari, and we solve it exactly using 
a spin model. We show that the situation is similar to a diffusion-limited kinetic 
situation ( though diffusion was a priori absent from the model). We find the 
occurrence of a large-scale organization phenomenon at low dimension called 
segregation, and for a finite size system, a transition to a saturated state at low 
desorption probability. We show how this transition is affected by the dimen- 
sionality of the substrate. We also show how the fluctuation spectrum of two 
quantities such as the saturation and the reaction rate can be drastically 
different, the first being universal and the other sensitive to the geometry of the 
substrate. 
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1. UNTRODUCTION 

Heterogeneous catalysis is a field that exhibits a large choice of reactive 
processes. These processes are of central importance for numerous 
industrial and practical applications. Moreover, this field contains a great 
wealth of still unclear or completely unexplained phenomena which creates 
a challenging domain of investigation for fundamental research. Even 
the most basic heterogenous bimolecular reaction, e.g., the conversion of 
carbon monoxyde on platinium, shows empirically a great deal of 
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unexpected and unclear behavior. For example, it has been shown 
experimentally that under appropriate conditions, the rate of oxidation on 
a Pt surface exhibits sustained temporal oscillations which are associated 
with an adsorbate-induced surface transformation/3) Recently, several 
models have been proposed (1'3) to unravel these mysterious behaviors; they 
mainly emphasized the irreversible dynamical behavior of a bimolecular 
system, beyond the scope of classical statistical mechanics. We consider 
here a model that was first proposed by Fichthorn, Ziff, and Gulari 
(FZG). (1) 

The FZG model consists of three steps: 

1. A bimolecular reaction: A + B ~ xx (two vacant sites). 

2. A symmetric desorption: A--*x and B ~ x  (with the same 
probability p). 

3. A symmetric adsorption: x--* A or B. 

The fast step is adsorption: at the time scale on which the process is 
analyzed, the sites are always filled with A or with B (no empty site). This 
model is so simple that it may not represent any actual reactive process. 
Nevertheles, it is a very interesting one because it allows us to extract 
important conceptual information that can be extremely useful in the field 
of reaction kinetics. We show in particular how the confiment of reactants 
to a medium with a dimension smaller than two requires one to consider 
a solution that goes beyond a mean-field treatment, which means that the 
implicit assumption of a uniform distribution of reactants on the surface is 
wrong. This model was first numerically studied by FGZ (1~ and later a 
mean-field solution was proposed by Considine et  al. (4~ Both predicted the 
occurrence of a bistability transition at a low desorption probability. We 
choose here to reconsider the model because we found that an interesting 
self-organization phenomenon is present. In a second step, we analyze both 
theoretically and through computer simulations the fluctuation spectrum of 
two macroscopic parameters: the saturation and the reaction rate. 

2. T H E  M A S T E R  E Q U A T I O N  

We map the system onto a dynamic spin model where a spin up 
represents one species (say A) and a spin down represents another species. 
A bimolecular reaction is always followed by adsorption, and a desorption 
is followed by an immediate adsorption. This can be decomposed into a set 
of elementary spin interactions. A master equation is then written that 
contains all the dynamical information on the system. We establish here the 
equation of motion for the first two moments of this equation. The interest 
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of the model lies in the fact that both sets of equations are in closed form. 
The lattice is taken to be a d-dimensional Euclidean space and whenever 
necessary a hypercubic lattice with cyclic boundary conditions. The linear 
size is L and the total number of sites is N = L  d. We define the spin 
parameter to be z / ( +  1 or -1 ) .  The reaction and adsorption are decom- 
posed into four processes. Consider one spin z / and  the interaction with a 
neighbor z/+~. If and only if these spins are opposed we have 
simultaneously the flipping process (zj, zj+~--+-zg, z/+~), the exchange 
process (z/,zj+~--+-zi,  -zg+~), the transfer process (z/, zj+~--+ z/, 
-z/+~),  and an identity process, each one with the same probability 1/4. 
The jump probabilities are, respectively, wE/,= = WE/,= = WT/,~ = 
1/16d(1-zF/+~ ). For desorption, the jump probability is WD/,== 1/2p. 
We write a master equation for the probability P({z}) to observe the spin 
configuration {z}: 

/~({z}) = ~ ~ [ WFj,~( { - z / } )  P({ - z /} )  + WF/,~({z}) P({z}) 
j 

+ wC,~( {-zj, -z++~}) p({-+, -zJ+~})- wC,=({z}) P({z}) 
+ VVT+,~({ -zj+~}) P({ -~,+=})- wr+,~({z}) P({z})] 

+y, WD;({-z A) P({-zj})- WD+({~}) P({z}) 
J 

This equation describes a process slightly different than the FZG model, 
but nevertheless both models are identical when p ~ 1. Solving for the first 
moment yj-- 1/N32/Z{z} z/P{z} leads to the equation 

9 = DA/7/ -  PTj 

with the notations 

af, = 2 ( f :+~-  f,) 
c~ 

and 

D = ~ / 2 d  

We recognize an effective diffusion term (with a diffusion constant D) and 
a desorption term. The diffusion term is a surprise, since no diffusion was 
put into the model. This is a consequence of the nearest neighbor reaction 
term in association with the fast absorption process. This equation is 
identical to the one we derived for a diffusion-limited annihilation 
process. I4) Unfortunately, the solution of this equation contains only trivial 
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information: the steady-state solution is identically zero, which just means 
that for each realization there is a symmetric one obtained by inverting all 
the spins and which has the same probability at steady state. In order to 
investigate the structural properties of the model, we have to go to a higher 
moment.  We established the equation of 'mot ion for mk = 1IN Y. (~jVj+ k);  
mk is a correlator that tells us up to which distance two spins are likely to 
be in the same direction. We obtain 

rhk = 2DAkmk - 2pmk - 2 D Q  ~ ~ , k  + 2(2Q + p)6o, k (1) 

The notation 6~,k is a Kronecker symbol for the vectorial indices c~ and k. 
We can easilly interpret the physical origin of all the terms of this equation. 
It contains an effective diffusion term (dkmk), a contact reaction term with 
a nonzero value for k = ~ ,  and a desorption term. The term which is 
nonzero for k = 0 is the one that keeps mo = 1 at all times and besides this 
term, this equation is reminiscent of an equation we have already found in 
the diffusion-limited case with desorption. The parameter  Q is the 
probability to have two opposite spins nearest neighbor in a given direc- 
tion e (since the model is isotropic, Q is the same in every direction). Q can 
be interpreted as a reaction probability. This set of coupled equations, 
though simple, contains nontrivial features. We propose here to investigate 
(1) more deeply, since we are now aware that it not only solves the F G Z  
model, but also gives important  information on the diffusion-limited 
problem. It is worth noticing that Eq. (1) is in a closed form, which is a 
direct consequence of the transition probability containing only quadratic 
terms and that the spin algebra has the property z 2=  +1. In a same 
manner  it is easy to see that all the moments  of zj decouple. In this paper 
we concentrate on steady-state properties. The dynamical behavior 
(approach to steady state) also shows some interesting features and will be 
discussed elsewhere. (5~ 

3. T H E  S T E A D Y  S T A T E  

Now we are interested in the steady-state properties of the F G Z  model 
when the desorption probability goes to zero. The investigate the transition 
toward a saturated state, we define an order parameter  

A AB = ( (NA -- Ns)  2 }/N 2 

NA and NB are the numbers of A and B on the lattice. This parameter  is 
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unity when the system is totally saturated. We define the spatial Fourier 
transform 

f q =  2 f j e  i2~/Lq'j 
J 

.fr ~- 2 L e - i27r/Lq.j 
q 

It is easy to check that AAB is the zero mode of the Fourier coefficients of 
mk. A Fourier analysis of Eq. (1) at steady state gives for the q mode 

1 Q(1 - p ) + p  p) _ 
rh q = -s ( Q + 2D ZJ- -~ -(il-S c~ss 2~qj/L ) + 

Therefore, we have 

AAB = l/N(1 + Q/p) (2) 

Equation (2) shows how the reaction rate and the saturation parameter are 
closely related in the steady-state limit. 

The correlation function m k yields 

rnk=Q6~,o+Q(1-p)+P c~ 
L a q~ 2D Y~f 1 (1 - cos27 rq j /L )+p  

(3) 

Thus we calculate Q and obtain 

1 - pFd(L, p) 
Q =  1/2 1 + 1 ( 1 - p ) F d ( L ,  p) (4a) 

with 

1 cos(2~/L ~2J-1 kjqj) 
Fa(L, p) = ~ q~ 2D 52J=1 (1 - cos27zqj/L) + p 

(4b) 

This function Fa(p,L ) has a central importance in this theoretical 
investigation, since its scaling behavior as a function of p, L, and the 
dimension d answers the questions we address here. First, let us notice that 
Eq. (2) shows that in the thermodynamic limit, no saturation is possible 
(AAB=0 when N--, oe). For a finite size system, a saturation will occur if 
Q/p ~-N. Furthermore, careful analysis of (4b) shows that the results can 
be interpreted as a function of a reduced variable X which depends on p, 

822/65/5-6-7 
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L, and the dimension d, and that determines the situation toward the 
saturation transition. We find 

X=Lp 1/2 for d =  1 

X=L2pln lip for d = 2  

X=L3p for d = 3  

At very low desorption probability p, i.e., for X ~  1, the leading term in 
Eq. (4b) is found to be in any dimension !/pL a. The consequence is that we 
have a saturated state and we obtain 

Z~AB~--- 1 

Q=Lap 

Now, let us consider intermediate values of the desorption parameter, 
i.e., X>> 1; we approximate the discrete sum (4b) over the modes qj by an 
integral where the L dependence has disappeared: 

Fd(L, P) --> Id(L, P) ~p/2 
~/2 COS(X1) 

= dxi...f d  ZDZj_  ~o ~o (1 - c o s  x j ) + p  

This regime is similar to the thermodynamic limit investigated in ref. 6. The 
system is sensible to low-dimensional confinement and in particular, for 
dimensions d ~< 2, we obtain a mesoscopic segregation corresponding to the 
occurrence of domains of size 1 ~ A ~ L. The self-organization scale A of 
the system can be estimated with the help of the correlation function mk. 
It is defined to be the scale for which mk shows no correlation and reaches 
the value rho=AAn. Since the regime X>> 1 defines a limiting situation 
where the saturation has no macroscopic relevance (i.e., trio = AAB ~ 0) and 
the reaction rate Q ~ 1 (i.e., m~ ~- 1), we define the saturation length A such 
that 

-Ac~ .Vm~ - 1 

In d =  1, we obtain in the limit p ~ 1, after calculation of the Eq. (3) when 
the sum is replaced by an integral, 

The segregation size is 

A ~ (D/p) 1/2 
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and we have a scaling behavior for the reaction rate and the saturation 
parameter  

Q = (p /D)  1/2 

A A B = ( p D ) - I / 2 L  1 

In d =  2 we extract the scaling behaviors 

A ~ in l ip  

Q = 2reD(log l /p)  

A AB = 27tD/(p log l/pL 2) 

This dimension d =  2 is the marginal dimension of the problem. In d =  3, 
we obtain 

A ~ 1 (microscopic size) 

Q = 1/2 

AAB = 1/(2pL 3) 

In summary,  we have a transition at low description probability 
toward a saturated state for X <  1. The transition corresponds physically to 
a random fluctuation in the difference of A's and B's which is not triggered 
by a spatial organizatiori, but generated by the source of particles. For a 
fixed number  of sites, the lower the dimension, the lower is the transition 
occurring in p. The reaction rate is drastically smaller than what is 
predicted by the mean-field solution It is a direct consequence of the 
mesoscopic self-organization of the system at a scale A. We find therefore 
for d~<2 

A ~ pal2 1 (5) 

For  d =  1, a saturation is observed when the size of the system is 
comparable to the segregation length A (i.e., when X ~ 1). The transition is 
shown in Figs. 1 and 2. If Fig. 1, we plot the saturation parameter  AAB for 
a fixed total number of sites N = 4096, in dimension d = 1, d = 2, and d = 3, 
as a function of the desorption probability. In addition, we plot the result 
of the mean-field calculation by Considine et a/. (4) Clearly, for d~<2 the 
mean-field calculation breaks down; In Figs. 2A and 2B, we represent the 
theoretical saturation parameter  and the results of Monte Carlo simula- 
tions, as a function of the reduced variable X, for different dimensions, 
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Fig. 1. 

i l l  " t  
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AAB as a function of p. Solid lines: d= l  (N=4096), d=2 (N=64.64), and 
d= (16 * 16 * 16). Dotted line: mean-field result. C4) 

system sizes, and desorption probabilities. The collapse of the data on a 
master curve is clear. 

Note  that in real catalysis problems, the case of d =  1 is not totally 
academic, since a catalytic surface is rarely plane and bidimensional and it 
is known now that the reactants have a preferential reaction probability on 
the steps of the terraces. Along this line, another interesting problem is the 
generalization of this study to fractal structures The form of Eq. (1) 
suggests a result similar to the one found in the diffusion-limited 
problem. (7) In the fractal case, with a spectral dimension ds, we suggest, 
according to these previous results, that the behavior of the segregation 
scale and the saturation transition would be similar to the Euclidean case 
if one replaces in Eq. (5) the Euclidean dimension d by the spectral 
dimension ds. This mean a strong effect is expected for most geometrically 
disordered systems which have in general d~ ~< 2. 

4. F L U C T U A T I O N  S P E C T R A  

Here we investigate the influence of the saturation and the segregation 
on the fluctuation spectrum of the total saturation F(t)= 1/LdZ 7r(t) and 
the reaction rate Q(t). We are in particular interested in the role of the 
dimension and the effect of the finite size. 

The total saturation F(t) reveals the total excess in a given species; it 
is a quantity that fluctuates around (F(t))= 0 and the standard deviation 



Analytical Solution of an Irreversible Surface Reaction Model 933 

i o  "i 

I o "~ 

, (00  I0"~ I0 "1 I iO 

(A) 

REOUCEO VARIABLE 

X '  

io - t  

I a "2 

REOU~EO WRE~BL[ 

(B) 

Fig. 2. AAB as a function of the reduced variable X. Solid lines are theoretical calcullations 
and symbols denote Monte Carlo simulations. (A) d =  1, X =  Np 1/2, N = 64 ( • ), N = 256 (C)), 
and N =  1024 (+ ) .  (B) d = 2 ,  X=Nplog(1/p), N = 6 4  ( •  N = 2 5 6  (C)), and N =  1024 (+ ) .  
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of which is the saturation parameter AAB. TO obtain the fluctuation 
spectrum, we design a Langevin approach already used in previous 
works. (6'8'9) We write a Langevin equation for the first moment 

~r(t) = OA'~r(t) -- P7r(t) + r/r(/') (6) 

?r(t) is ~the value of the spin variable at time t and at the site labeled by the 
vectorial index r. Here t/r(t ) is the "random force" associated with the 
microscopic fluctuations. We take 

(~r( t))  = 0  

(r/r(t) r/'r(t')) = B(r - r') 6 ( t -  t') 

The noise is local in time and its spatial structure is chosen to reproduce 
the steady-state result of the second moment given by Eq. (1). We solve 
Eq. (6), and we obtain 

with 

Identification of 

Yr( t ) = ~ ~q(0) exp(- i 2 z t / L q  . r -  Kq . t) 
q 

fo + ~  dt' e x p [ -  - K q . ( t ' - t ) - i 2 ~ / L q r ]  "Oq(t') 
q 

d 
Kq=2D ~ ( 1 - c o s  2zt/Lqj)+ p 

j ~ l  

(7) 

~ (Tr(t) "Yr+k(t)) 

calculated from (7) with Eq. (3) yields, in the limit t >> l/p, the equivalence 
condition 

1 
Bq = ~2 [2QKq + 2Q(1 - p) + p]  

where Q is the steady-state reaction rate. Now we are in a position to 
calculate the fluctuation spectrum of F(t)= 1/LaZ 7r(t), which is given 
by the Fourier transform of the autocorrelation function C ( , ) =  
(F(t) F(t + ~). We obtain 

C(T) = Z~AB exp( - -pz)  
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Fig. 3. Saturation parameter fluctuation S(co) normalized by AAB/P a s  a function of y = co/)). 
(A) d =  1; (B) d =  2. Monte Carlo simulation (symbols) and theoretical expectation (1 + y2)-1 
(solid line). 
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and a spectrum 

Sa(co) = AAB/p/(1 + y2) with y = co/p 

This spectrum corresponds to a simple exponential relaxation with a 
correlation time l/p, and does not depend on the dimension of the 
substrate. We also note that an exponential decay with this specific 
correlation time was obtained by us with a mean-field calculation using 
a Van Kampen expansion (1~ of the Fokker-Planck equation derived 
by Considine et al. In Fig. 3 we represent the normalized spectrum 
SA(O))p/AAB a s  a function of y for various conditions. The agreement with 
the theory is always excellent. Therefore, it is clear that the shape of the 
spectrum is universal, independent of the dimension, and coincides with a 
mean-field result (except of course for the prefactor value AAB). Therefore, 
we conclude that a typical population change (which corresponds to a 
random inversion of the excess in A or in B) is achieved in times of the 
order of l ip and is only triggered by the fluctuations of the source, inde- 
pendent of the spatial organization of reactants. 

Now we are interested in the reaction rate fluctuations. Fichthorn et 
aL (11) have shown in d =  2, on simulations, that these fluctuations offer an 
interesting dynamical behavior. When p is decreased, the noise level is 
highly increased and sudden bursts of reaction are produced, followed by 
periods of dead calm. They also show that the noise is intimately related 
to the mean surface coverage in one species [equivalent to the saturation 
parameter AAB(t ) in our language], which means that for a high coverage 
of one species the rate is low and the rate is maximum at equal coverage. 
We want to go a little bit further in this analysis and show that the reaction 
noise has a really complex behavior which is dependent not only on the 
saturation, but on the dimension and the self-organization of reactants. We 
performed Monte Carlo simulations in d =  1 and d =  2 for a finite size 
N =  100 sites (see Fig. 4). The fluctuation spectrum behaves like a low-pass 
filter, but the frequency cutoff saturates to a fixed lower value as we come 
across the transition (i.e., X~< 1). For  X <  1 the normalized spectrum seems 
to show a constant shape. The cutoff frequency varies with the size of the 
system (see Fig. 5) and the slope is ~ = - 2  in d =  2 and ct = -1 .5  in d =  1. 
For  X >  1 the cutoff frequency shifts to higher values and the slope is 
increased. It is noticeable that in d = 1 the slope reaches a values c~ close to 
- 1  for large X. We performed a Langevin calculation on the reaction rate 
using a Gaussian decoupling of the noise at the level of the four times 
correlation function. The behavior we obtained could not reproduce the 
features we describe here, which means that it is necessary to go to the 
fourth moment calculation in order to study this surprising behavior. 
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Fig. 4. Reaction fluctuation R(co) normalized by R(1) as a function of co. Monte Carlo 
simulations (symbols) and curve (1 + cn2/~o2) -1 (solid line). (a) d =  1 for N =  100 and J r=  1.0 
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Fig. 5. Results of Monte Carlo simulation: spectrum of the reaction rate fluctuations S,,~, 
normalized by the value at low frequencies after the transition (X=0.3) for different system 
sizes in dimension d = 2 :  (*) L = 7 ,  ( + )  L=10,  ((3) L=14,  ( x )  L=20.  

5. C O N C L U S I O N S  

We have shown for a simple reaction-limited model with desorption 
that the presence of a high rate of adsorption could lead to a behavior 
recalling a diffusion-limited model. For  an infinite system the effective diffu- 
sion term leads to a mesoscopic scale of organization controlled by the rate 
of desorption p. This effect disappears for d > 2. For  a finite size system, at 
low p, this self-organization is still present, but a transition to a saturated 
state occurs at lower p. The transition is monitored by the dimension of the 
space. At low dimension (d~<2) the system is much more resistant to 
saturation and the reaction rate is lower than what is predicted by a mean- 
field theory. This study also shows, in analogy with diffusion-limited 
systems, that a self-organization scale is likely to persist for fractal sub- 
strata with a spectral dimension lower than two. We also show the drastic 
difference in the fluctuation spectra of the saturation (excess of one 
reactant) and the reaction rate, the first being universal and the other 
dependent on the dimension. This indicates the fundamentally different 
origin of the saturation and the segregation. The saturation is controlled by 
the fluctuation of the source and is independent of the segregation. On the 
other hand, the reaction rate depends strongly on the self-organization 
inside the system as well as the transition parameter. 
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